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ROBUST MULTIGRID SMOOTHERS FOR THREE DIMENSIONAL ELLIPTIC
EQUATIONS WITH STRONG ANISOTROPIES *

IGNACIO M. LLORENTE! AND N. DUANE MELSON*

Abstract. We discuss the behavior of several plane relaxation methods as multigrid smoothers for the
solution of a discrete anisotropic elliptic model problem on cell-centered grids. The methods compared are
plane Jacobi with damping, plane Jacobi with partial damping, plane Gauss-Seidel, plane zebra Gauss-Seidel,
and line Gauss-Seidel. Based on numerical experiments and local mode analysis, we compare the smoothing
factor of the different methods in the presence of strong anisotropies. A four-color Gauss-Seidel method
is found to have the best numerical and architectural properties of the methods considered in the present
work. Although alternating direction plane relaxation schemes are simpler and more robust than other
approaches, they are not currently used in industrial and production codes because they require the solution
of a two-dimensional problem for each plane in each direction. We verify the theoretical predictions of Thole
and Trottenberg that an exact solution of each plane is not necessary and that a single two-dimensional
multigrid cycle gives the same result as an exact solution, in much less execution time. Parallelization of
the two-dimensional multigrid cycles, the kernel of the three-dimensional implicit solver, is also discussed.
Alternating-plane smoothers are found to be highly efficient multigrid smoothers for anisotropic elliptic

problems.
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Subject classification. Computer Science

1. Introduction and motivation. The efficient solution of systems of partial differential equations
is a challenging practical problem from a computational point of view. Computer scientists, applied math-
ematicians, physicists and engineers are contributing to achieving the shared goal of faster, more accurate
numerical solutions while always considering the possibilities and limitations of current computers. In fact,
progress in numerical solution of these systems requires the effective combination of advances in algorithm
development, understanding underlying physics, and computer hardware.

Today, many in the computational community are engaged in finding and developing the fastest methods
to solve the systems of equations resulting from the numerical discretizations of mathematical models in
physics, chemistry, engineering, medicine, etc. This search is one of the main goals of scientific parallel
computing because the numerical solution of these systems of equations is compute-intensive and is the
limiting factor in the size of problems and complexity of the physics that can be solved numerically.

Consequently, it is necessary to fully understand a numerical method before it is used as a tool to solve
practical numerical problems. The definitive measures of the efficiency of a method are execution time and
memory usage. Execution time is difficult to predict because it depends on the numerical and architectural

properties of the method as well as the performance of the underlying computer. The numerical properties
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include its computational complexity: convergence rate and work per cycle in our particular case. The
architectural properties of a method include its memory usage, parallel efficiency and data locality. Good
data locality has become a valuable property of a numerical method because it assures an efficient use of the

hierarchical memory structure (cache) of current microprocessors.

Standard multigrid techniques are efficient methods for solving many types of partial differential equa-
tions (pde’s) due to their optimal complexity (work linearly proportional to the number of unknowns),
optimal memory requirement, and good parallel efficiency and scalability in parallel implementations. Al-
though highly efficient multigrid methods have been developed for a wide class of problems governed by
pde’s, they are underutilized in production and commercial codes. One reason for this is that the high level
of efficiency is not maintained in anisotropic problems, i.e., the convergence rate of standard multigrid meth-
ods degenerates on problems that have anisotropic discrete operators. There is intensive ongoing research
aimed at combining the high efficiency of multigrid with good robustness so that multigrid becomes more

widely used in production and/or commercial codes.

Several methods have been proposed in the multigrid literature to deal with anisotropic operators. One
popular approach is to use semi-coarsening where the multigrid coarsening is not applied uniformly to all of
the coordinate directions. By selectively NOT coarsening the grid in a certain direction, the anisotropy can
be reduced on the coarser grid. This makes it easier for the smoother to eliminate other components of the

high frequency error on the coarser grid. (This approach is basically a ‘work-around’ for a weak smoother.)

Another approach for dealing with anisotropic problems is to develop and use multigrid smoothers
which can eliminate all high frequency errors in the presence of strong anisotropies. The present work
explores the capabilities of a class of plane-implicit smoothers in the presence of various anisotropies. These
plane-implicit schemes are a natural for structured grids. (It is more difficult to apply these plane-implicit
schemes to unstructured grids because there is no natural definition of a plane or even a line.) Other
intermediate alternatives that combine implicit point or line relaxation with partial and full coarsening have
been presented in the multigrid literature [5]. In Section 4 we give a brief introduction to several approaches
to plane-implicit smoothers. A comparison between the alternatives is difficult because there are many
performance parameters involved that result in a great variety of numerical and architectural properties.
We do not find one method always better than the others; rather, we find that each one can be optimum in

different situations.

Multi-block structured grids are often used in fluid dynamic applications to capture complex geometries
and facilitate parallel implementation without dealing with unstructured grids. Inside each block stretched
grids are used to obtain improved discretization accuracy near the boundaries where high gradients in the
solution are often present. As a result, the local discrete operator may contain strong anisotropies from both
the coefficients of the equation and the highly stretched grid. The objective of this report is to study the
behavior of traditional plane relaxation methods as robust smoothers for the multigrid solution using full
coarsening of these discrete anisotropic operators. The model problem under study is the solution of the

anisotropic elliptic model equation on a cell-centered grid, described in Section 3.

This report presents analytical formulae for the smoothing factors of some plane relaxation smoothers
with periodic and Dirichlet boundary conditions. The analytical expressions are verified with several nu-
merical experiments with Dirichlet boundary conditions and cell-centered grids. The formulae provide an
accurate prediction of the numerical results. The dependence of the convergence rate on the strength of
the anisotropy for the model problem on vertex-centered grids has been previously studied for the two-

dimensional (2-D) case, for example by Wesseling in [31], and observed for the three-dimensional (3-D) case



with zebra Gauss-Seidel by Thole and Trottenberg [28]. This report contains the first published numerical
results and analysis of the behavior of plane relaxation methods for cell-centered grids. The results, pre-
sented in Section 6, are very satisfactory. The performance of some plane smoothers improves considerably
for strong anisotropies since they effectively become exact solvers.

The numerical results show that zebra Gauss-Seidel does not perform as well as expected, in fact, the
standard (lexicographic order) Gauss-Seidel obtains better convergence rates. This seems to contradict the
results presented by Thole and Trottenberg in [28] and by Yavneh in [32] for vertex-centered grids. However,
the deterioration of the smoothing factor of Gauss-Seidel with odd-even ordering on cell-centered grids has
been previously reported by Gjesdal [8] for the 2-D case.

We show that the use of alternating-plane relaxation smoothers yield very efficient robust multigrid
solvers. They are considered in the multigrid literature to have poor numerical and parallel properties
because of the expensive and parallel inefficient solution of a large number of 2-D problems. However, we
demonstrate in Section 5 that an exact solution of the planes is not needed and that just one 2-D multigrid
cycle is sufficient which considerably reduces the execution time of a 3-D smoothing sweep. This result is
also shown analytically in [28] by Thole and Trottenberg. On the other hand, the solution of each plane
by a 2-D multigrid cycle involves the solution of a very large number of tridiagonal systems of equations
(in a general case, band structured with constant bandwidth). This is not a problem in a sequential setting
because very efficient band solvers exist. However, in a fine-grain parallel setting the tridiagonal systems
may be distributed across many processors which leads to a high volume of interprocessor communication.

Section 7 studies different alternatives to bridge this drawback.

2. Factors to consider when comparing numerical methods. Computational scientists are inter-
ested in increasing the accuracy of their numerical simulations while reducing the execution time required to
obtain the solutions. Therefore, the quality of the solver must be considered in terms of program execution
time and memory usage, relative to the accuracy obtained in the numerical simulation. Of course, there are
other criteria for a good code that candidate methods must satisfy: reliability, robustness, portability, main-
tainability, etc. However, execution time and memory usage are the definitive metrics for the performance of
a numerical method. Execution time depends on the numerical properties of the method, the performance
of the computer and how the code exploits the underlying computer architecture (architectural properties).

The numerical properties are usually studied by way of theoretical complexity studies based on problem
size. However, one can reach misleading conclusions regarding the numerical efficiency of a method by just
comparing complexities. The complexity studies usually represent an asymptotic limit, but for finite practical
problem sizes, the results can improve or deteriorate. One example of this situation is a result shown in this
paper where, for practical mesh sizes, the smoothing properties of plane smoothers improve considerably
relative to the predicted performance for a grid with an infinite number of points. An improvement of
the numerical properties of a method can be considerably more beneficial than the improvement of the
architecture properties. Improvements in convergence rate compound with each iteration or multigrid cycle
whereas improvements in operations-per-second remain linear. However, as discussed in [26], the programmer
must be aware of the underlying architecture to use the full potential of current computers; from workstations
to high performance platforms.

With the rapid technological and architectural development occuring in the wide variety of computers
currently available, it would seem that it is impossible to consider the underlying computer when developing
and comparing numerical methods. However, there are some architecture properties that are essential, (and

likely to remain essential over the next few years) to use the full potential of most current computing systems.



Parallelism is one of these architectural properties. Different levels of parallelism are needed for efficiently
exploiting the high number of execution pipelined units in the current superscalar processors and for keeping
busy the processors in a parallel computer. The trends in high performance computing show that future
computers will consist of thousands of commodity microprocessors. In fact, it is presently very common in
the numerical literature to consider the parallelism grade as one of the main comparison factors.

The performance of the current superscalar microprocessors indicates an increasing dependence on effi-
cient usage of hierarchical memory structures. Indeed, the maximum performance that can be obtained in
current microprocessors is limited by memory access speed. The peak performance of the microprocessors has
increased by a factor four to five every three years by exploiting increasing integration density, reducing the
clock cycle, and by implementing architectural techniques to take advantage of multiple levels of parallelism
in a program. However, memory access time has been reduced by a factor of only 1.5 to 2.0 over the same
period. The disparity between improvements in microprocessor speed and memory access speed seems likely
to continue over the next few years. Microprocessors may reach a speed of 4 Gflops at the beginning of the
next century [19] without a commensurate memory access speedup. The common technique to bridge this
gap and hide the memory latency problem is by using a hierarchical memory structure with large fast cache
memories close to the processor. As a result, the memory structure has a strong impact on the design and
development of a code, and the program must exhibit spatial and temporal data locality to make efficient
use of the cache memory and so keep the processor busy.

Therefore data locality is becoming as important as parallel efficiency when studying and comparing
different algorithms. The effectiveness of data locality has been well demonstrated in the LAPACK project
[1] and major research has just begun to develop cache-friendly iterative methods [6, 25]. On most RISC
machines, there is an order-of-magnitude increase in performance going from an out-of-cache implementation

to a cache-friendly implementation.

3. The numerical problem. We consider the following anisotropic elliptic partial differential equation
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This anisotropic Poisson equation is solved on a 3-D rectangular domain Q C R3 with some suitable boundary

conditions.

3.1. Discretization. There are two ways to replace a space continuum by a space structured grid. In
finite difference discretizations the domain €2 is divided in cells and the conserved quantities are stored at the
vertices of these cells (vertex-centered formulation). In finite volume discretizations, the domain € is also
divided into cells but the conserved quantities are stored at the centers of these cells (cell-centered formula-
tion). Cell-centered grids have been widely used in CFD for the finite volume solution of the incompressible
and compressible Navier-Stokes equations. As our goal is to study the behavior of the smoothers in a CFD
setting we focus our attention to cell-centered grids.

The nodes of the discretization are given by

G = {iL’ €Q:x= Zj :jhaj = (jlanaij)v
h= (hl,hg,h;g),ja = O7 1, ...,’I’La,ho{ = 1/n(y,a = 1, ...,3},

the computational grid is given by
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and the boundary conditions are evaluated at
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Fig. 1 shows a uniform 32x32x32 grid.
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The following difference equations, involving algebraic relationships between grid points, are obtained



via a discretization of Eq. (3.1) on the cell-centered computational grid (3.2) by a finite volume technique
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where u; j 1, is the discrete version of u(z,y, z) function in (i — 1,5 — 2,k — ).
This equation can have different space steps in each dimension which results in a different aspect ratio
in each dimension. If the equation is then normalized by the coefficient in the z-direction, the following

anisotropic discrete operator is obtained:

€1(wim1,4k = 2Ui jk + Wit1 j) + €2(Uig—1k — 2Ui jk + Wi1k) F (Wigk—1 = 2wk + Uigkt1) = fi g

(3.3) i=1,.,n1,j=1,..,n0,k=1,...,n3

where € and ey are the strength of the anisotropies.

The structured grids used in the present work allow a relatively easy sequential and parallel implemen-
tation using, for example, distribution strategies supported by the current versions of High Performance
Fortran (HPF). Furthermore, parallel implementation and cache memory exploitation is possible due to the
regular data structures in the structured grids.

Grid stretching is commonly used in CFD grid generation to pack points in regions of high gradients in the
solution while avoiding having too many points in more benign regions. In the present work, the stretching
of the grid in a given direction is determined by the stretching ratio (quotient between two consecutive space
steps) or by a boundary fraction parameter (fraction of uniform spacing used for spacing at the boundary).
Figure 2 shows a stretched grid with stretching ratio of 1.5 (boundary fraction 0.01) in the x-direction and
uniform in the y- and z-directions. Figure 3 shows a stretched grid with a stretching ratio of 1.5 in all three
directions.

In a stretched grid, each cell can have different aspect ratios and so the discretization of Eq. (3.1) is

given by the following general discrete operator:
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where Dirichlet boundary conditions are imposed at the boundaries of the domain. Note that Eq. (3.4)
includes the case with variable coefficients, different values of a, b, and ¢ in different parts of the computa-
tional domain. Varying grid aspect ratios and values of the equation coefficients cause the strength of the
anisotropies to be different in each cell.

The computational experiments presented in this report study separately both sources of anisotropy:
anisotropic equation coefficients on uniform grids and isotropic equation coefficients on stretched grids. These

represent different situations; the first represents anisotropies that are uniform thoughout the domain and the



F1G. 2. 82232232 stretched grid along z-direction (stretching ratio 1.5 and boundary fraction 0.01).

latter represents anisotropies that vary from cell to cell in the domain. Note that for exponential stretching
in all directions, every cell can have a different level of anisotropy between the coeflicients of the discrete
operator. On the other hand, when there is exponential stretching in only one direction, two coefficients are
similar and the third coefficient, corresponding to the stretching direction, changes in each cell.
If we consider the relative size of the resulting terms in the three coordinate directions, we see that there

are several possible scenarios for a given cell:

e all three terms are relatively equal (isotropic with no directions dominant)

e one term is relatively larger than the other two terms (anisotropic with one direction dominant)

e two terms are relatively larger than the third term (anisotropic with two directions dominant)

4. Robust multigrid methods. The multigrid technique has many important advantages from the
computational point of view. A well designed multigrid method has, at most, a computational complexity of
O(Nlog N), where N is the number of equations in the system, to achieve a numerical solution to the level
of truncation error [2, 3, 18, 31]. Moreover, these multigrid methods offer very good parallel efficiencies and

scalability on parallel computers [15, 16, 17].



F1c. 3. 82232232 stretched grid along all directions (stretching ratio 1.5 and boundary fraction 0.01).

Multigrid methods rely on a combination of a smoothing process coupled with a coarse grid correction.
Multigrid smoothers are often traditional relaxation or incomplete factorization based methods and serve
to reduce high frequency components of the error in the solution on the fine grid. The smooth components
of the error are more efficiently approximated on coarser grids. Therefore, using a grid hierarchy, we can

efficiently reduce the whole frequency domain and achieve the final solution with an optimal operation count.

4.1. The FAS multigrid scheme. The system of equations (3.4) is solved by the full approzimation
scheme (FAS) scheme [2, 18, 31]. This multigrid method is more involved than the simpler correction scheme
but can be applied to solve a wider number of problems, such as the solution of nonlinear equations.

In vertex-centered coarsening, a coarse grid is obtained by sampling the next finer grid at every other
point. In cell-centered coarsening, a coarse grid is obtained by taking unions of fine grid cells. Consequently,

by applying cell-centered coarsening, a sequence G : I = 1,2, ..., L of increasingly coarser grids is obtained

. . L. 111
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The following iterative algorithm represents an FAS (v1,72)-cycle to solve the system Lu = f where
Q=0

u«— FAS(L,u, f)
step 1: Apply 1 sweeps of the smoothing method on L'u! = f!

RESTRICTION PART

FOR1=2TOL

step 2: Computation of residual r'=1 = fi=1 — LI=1q!=1

step 3: Restriction of residual r! = R'=1pl~1

step 4: Restriction of current approximation uf)ld = RI= 1yt
step 5: Computation of right-hand side f! = ! + Lt!,

step 7: Apply 71 sweeps of the smoothing method on Liu! = f

PROLONGATION PART
FOR1=L-1TO 1

. : : : [ L, 41 I+1
step 8: Correction of current approximation u* = u* — P*(u 1 uold)

step 9: Apply 72 sweeps of the smoothing method on Liu! = f!

The operators that perform the restriction, R (steps 3 and 4), and prolongation, P (step 8), connect the
grid levels; the prolongation operator maps data from the coarser level to the current one and the restriction
operator takes values from the finer level to the current one. For the restriction operator, we used unweighted
averaging for u and a volume weighted sum for the residual. Trilinear interpolation in the computational
space was used for the prolongation operator. The smoothing methods are implemented in delta form, which
is simpler to program but computationally less efficient.

Plane-implicit smoothers (step 7 and 9) require the solution of a large number of 2-D boundary value
problems. For example, an (x,y)-plane smoother requires the solution of ng problems (K = 1,...,n3) given
by:

e1(im1j i = 20k + wig5k) + € (i1 k= 2uig K + i) + (<2ui k) = f1R

1=1,..,n,j=1,....n9
where ff;ID( depends on the relaxation method. The resulting 2-D problems are more favorable because
the systems may have more diagonal dominance than the original 3-D system. The 2-D problems can be
efficiently solved by also using 2-D FAS cycles (Section 5).

Notice that the grids visited in the 2-D coarsening are different from the grids used for the 3-D multigrid.
Therefore, the grid metrics for the grid hierarchy to solve the planes does not correspond to the grid metrics
for the 3-D grid hierarchy. To precompute all the metrics for the 2-D grid hierarchy would significantly
increase the memory requirements of the multigrid code. In fact, the required memory for a 3-D cycle with a
point-wise smoother grows as O(%N ), but to precalculate all the metrics of a plane-wise smoother, it would
grow as O(%N), which is about 52% larger.

Due to the considerable improvement of convergence rate achieved by multigrid methods, the solution

of pde’s is moving from time-critical applications to accuracy-critical applications [17]. In these kinds of



applications, memory usage is the limiting factor for solving larger problems. Savings in computing time
are just used to solve bigger problems. Consequently, it is important to maintain the memory requirements
of point-wise smoothers when implementing plane-wise smoothers. Therefore, the present scheme is coded
using just one 2-D multigrid data structure and recomputing each 2-D system of equations every time a plane
is visited. This implementation maintains the memory requirements of the original 3-D multigrid cycle, but
increases the execution time. However, because the memory requirements are the same, the performance of
the plane smoother can be more exactly compared with the performance of point and line smoothers. This
implementation alternative also improves the data locality (temporal and spatial) of the algorithm because
the same 2-D multigrid structure is used to solve each plane. The temporal locality is improved because the
2-D data structure fits in cache and the program uses the same data storage addresses when solving each
one of the planes. The spatial locality of the data is improved in the current implementation because data
are contiguously stored in memory whereas the usage of a global 2-D multigrid hierarchy to store all planes

would present different memory access strides depending on the orientation of the plane.

4.2. Robust multigrid methods for anisotropic equations. For a wide class of pde problems,
highly efficient multigrid methods have been developed. Unfortunately, this high level of efficiency is not
maintained for problems with strong anisotropies.

For example, let us consider the following 2-D model discrete equation

(4.2) €(wi—1,j — 2u;j + Uiv1,5) + (Wij—1 — 2uij + Ui j+1) = fi;

1= 1,...,n1,j = ]., D]

where € > 1. In this case the standard multigrid algorithm, based on a point-wise smoother, is not a good
approach because after few sweeps the error becomes smooth in the x-direction and not in the y-direction.

The two components used in multigrid for error attenuation are the smoothing method, to reduce the high
frequency components of the error, and the coarse grid correction, to reduce the low frequency components
of the error. Consequently, to maintain good convergence rates on anisotropic operators we have to improve
either the smoother or the coarsening process:

e Keep standard coarsening, but change the smoothing method; solve simultaneously for those un-
knowns which are strongly connected (x-line relaxation on Eq. (4.2): lines parallel to x-axis).

e Keep point-wise smoothing method, but change the coarsening strategy; define the coarser grid by
doubling the mesh size in those directions in which the error is smooth (x-semicoarsening on Eq.
(4.2), double the mesh size only in the x-direction).

In the 3-D case, represented by Eq. (3.3), we can extend the previous alternatives by using plane
relaxation to solve simultaneously those unknowns which are strongly coupled or by coarsening only those
directions in which the error is smooth.

Brandt’s fundamental block relaxation rule [2] states that all strongly coupled unknowns (coordinates
with relatively larger coefficients) should be relaxed simultaneously. So, if €2 = 1 in Eq. (3.3), we could
use x-line relaxation as an efficient smoother. However, if €; & €3 > 1 (x,y)-plane relaxation is needed to
provide a good smoother. There are other approaches that efficiently combine block and point relaxation
with full or partial coarsening, see for example [18].

The block relaxation rule can be extended to blocks that also include relatively small coefficients if the
coordinate directions with relatively small coefficients are not coarsened. Although this alternative is more
robust, its computational complexity (operation count) increases considerably because it is necessary to solve

noncoarsened blocks at each multigrid level. As a result, we can conclude that an efficient smoother with full

10



coarsening is obtained by block relaxation of the coordinates with relatively larger coefficients if the problem
to be solved in the remaining coordinates is isotropic; and the coordinates with relatively smaller coefficients

can also be relaxed in the block when the grid is not coarsened in their corresponding directions.

The situation becomes more involved with real applications, see Eq. (3.4). First, the coefficients of
the pde can vary throughout the computational domain. Second, the efficient resolution of many pde’s
requires stretched grids that have mesh spacing that varies several orders of magnitude in different coordinate
directions. As a result, the values of the ¢ parameters and their relative magnitudes vary for different parts of

the computational domain. For this type of problem, robustness can be achieved following these directions:

e Robust multigrid smoothing processes with standard coarsening. Use alternating-line relaxation (x-
line smoothing sweep — y-line smoothing sweep) in 2-D and alternating-plane relaxation ((y,z)-plane
smoothing sweep — (x,z)-plane smoothing sweep — (x,y)-plane smoothing sweep) in 3-D. Previous
attempts of this approach in the multigrid literature have suggested that it has poor numerical
and architectural properties since it requires the solution of many 2-D problems and presents a
parallelization challenge because it requires the solution of systems of equations which are distributed
across many processors.

e Point-wise smoothing methods with robust coarse grid correction. The algebraic multigrid approach
(AMG) combines a point-wise smoother with a fully adaptive coarsening process. The control of the
coarsening is done in an adaptive way by semicoarsening in different directions for different parts of
the computational domain [14, 24]. AMG involves very complicated data dependent grid structures
that break the regularity of geometric multigrid. Hence AMG is mainly used with geometrically
complex applications which have been discretized using unstructured grids where there is no natural
definition of a global line or plane on which to apply alternating-block smoothers. The multiple
semicoarsening method was proposed in order to avoid plane relaxation without dealing with the
difficulties of AMG [20, 21]. This method employs more than one semicoarsened grid on each
coarser level and a recombination of the corrections from each of the coarse grids to yield an optimal
efficiency. It is more expensive (execution time and memory usage) than the alternating-block
alternative, but provides two levels of parallelism: parallelism on each grid and parallelism across
the grids on each multigrid level [23].

o Simple smoothing processes combined with appropriate semicoarsening strategies. A simple way to
avoid alternating-plane relaxation, but increasing the execution time, is to use relaxation just in a
fixed plane and semicoarsening in the remaining direction [10]. Another alternative, which avoids the
problem of recombining corrections of the multiple semicoarsening method, is the flexible multiple
semicoarsening method. This method uses standard coarsening combined with a semicoarsened
smoother. The smoother itself corresponds to a V-cycle employing semicoarsened grids while the

multigrid cycle is still based on standard coarsening. The method is easy to parallelize [29].

There is also intensive research to achieve robustness by the combination of Krylov methods, such as

generalized minimum residual (GMRES) and conjugate gradient methods [22, 29] with multigrid.

In the appendix, we present the smoothing properties of some plane relaxation smoothers for strong
anisotropies. We first show their predicted smoothing factors from Fourier local mode analysis with periodic
and Dirichlet boundary conditions and then we present some numerical results to verify the analytical
formula. The numerical results show that Fourier analysis provides an accurate prediction of the smoothing

factor.
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5. The inner 2-D multigrid. Although plane relaxation is simpler and more robust than a semi-
coarsening approach, it has not been widely applied in practical situations because it requires the solution
of a 2-D problem for each plane in each smoothing sweep. However, we show that an exact solution for the
2-D problems is not needed. An approximate solution is sufficient and can be obtained by applying just one
2-D multigrid cycle.

Table 5.1 compares the experimental 3-D convergence rates obtained with just one 2-D cycle in each
plane, with two cycling strategies: V(1,0) and V(1,1), with the convergence rate obtained with a 2-D exact
solver (four 2-D (2,1)-cycles). The results are very interesting. With one 2-D V(1,1)-cycle, we obtain the
same convergence as with the exact solver with significantly less computational work.

The amplification factor of a 2-D multigrid cycle can be approximated by the smoothing factor of its
smoother. Observe that we require a line relaxation smoother for the 2-D cycles because there may be an
anisotropy in each plane, for example to solve the (x,y)-planes we need a y-line smoother when €; < €2 and a
x-line smoother otherwise. For robustness in the general case where €1 < €5 in part of the plane and €; > €5

in part of the plane, an alternating line scheme can be used.

cycling strategies of the 2-D cycle
a | e (1,0) | () | Exact
1|1 0.45 0.34 0.34
1 | 102 0.27 0.25 0.25
110 || 1.5x1072 | 6.1x1072 | 6.1 x 1073
1|10 | 1.5x107% | 6.1 x107° | 6.1 x 107°
11108 1.5%x1076 |62x1077 | 6.2x 1077

TABLE 5.1
Computational convergence factors, pe, of one 3-D V(1,0)-cycle with (z,y)-plane Gauss-Seidel for different ea and €1 =1
solving the planes with one 2-D V(1,0)-cycle, one 2-D V(1,1)-cycle and an ezact solver (four 2-D V(2,1)-cycles)

The behavior of the approximated smoothing method can be analyzed as a perturbation of the exact
method. The smoothing factor, 5,, of a plane relaxation smoother when ~v,_p multigrid cycles with an

amplification factor p,_, are used to solve each plane can be approximated by

(5.1) Pox P+ (Pyp)>?

where p is the smoothing factor of the plane smoother with an exact 2-D solver.

As is shown in Section A.5, the smoothing factor of a 2-D line relaxation method is quite similar to its
corresponding 3-D plane version (p ~ p,_p). Consequently, if we use the same block relaxation method in
2-D and 3-D cycles, the 3-D smoothing factor with one 2-D V(1,0)-cycle is given by

Pa P+ (Po_p) = 2p
and with one 2-D V(1,1)-cycle it could be approximated by
Pa =P+ (P2_p)’ =P

Observe that the decrease of the convergence rate for strong anisotropies is also presented in the 2-
D smoother because €; remains fixed and e increases, so the 2-D problem solved in each plane is also

anisotropic. However, if both anisotropy values are increased together, the 3-D problem is anisotropic but

12



the 2-D problem does not present an anisotropy and so the convergence rate of the 2-D problem remains

fixed, becoming the dominant term in (5.1)

Pa P+ (Poep)®P =22

cycling strategies of the 2-D cycle

a | e[ ao]ay] Exact

1 1 || 045 | 0.34 0.34
102 | 102 || 0.37 | 0.14 0.20
104 | 10* || 0.37 | 0.14 4.6 x 10~*
108 | 108 || 0.37 | 0.14 2.8 x 106
10% | 10% || 0.37 | 0.14 3.3x10°8

TABLE 5.2

Computational convergence factors, pe, of one 3-D V(1,0)-cycle with (z,y)-plane Gauss-Seidel for different ez and €1
solving the planes with one 2-D V(1,0)-cycle, one 2-D V(1,1)-cycle and an exact solver

This behavior is illustrated by Table 5.2. Considering these results we could conclude that we can not
approximate the 2-D solver when both anisotropies are strong. However, we must take into account that
one smoothing sweep with the exact solver is considerably more expensive than the smoothing sweep with
an approximated solver and so the overall efficiency can be better for the approximated method.

Fig. 4 shows the residual versus work units for 3-D V(2,1)-cycles to solve four anisotropic equations on
a 32x32x32 uniform grid with five smoothers:

e point-wise Gauss-Seidel (point),

e y-line Gauss-Seidel (plus),

e (x,y)-plane Gauss-Seidel with exact solver in each plane (square),

e (x,y)-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane (star), and
o (x,y)-plane Gauss-Seidel with one 2-D V(1,0)-cycle in each plane (circle),

These results allow a comparison of the performance of the plane approximate solvers with the plane
exact solvers and with the behavior of point and line smoothers. The smoother used in the 2-D cycles to
solve the planes is y-line Gauss-Seidel. Each symbol is drawn at the completion of a 3-D multigrid cycle to
compare the computational complexity of the cycles corresponding to different smoothers. Here a work unit
is conservatively defined as the computer time consumed in a residual computation on the finest grid (the
time to perform one point-wise iteration on the finest grid is about two work units).

As indicated in Fig. 4, the approximate plane solution version with one 2-D V(1,1)-cycle (star) is more
efficient than the approximate version with one V(1,0)-cycle (circle) and the exact version (square). Even
when the 2-D problem solved in each plane is isotropic and the remaining direction is effectively decoupled
(a=b=10000, c=1), it is not worth using the exact solver because each 3-D cycle consumes too much time.
The behavior of the plane smoother for strong anisotropies is absolutely good. The residual reduction per
work unit or cycle increases as the anisotropy gets stronger (the two graphics at the bottom of the figure
show a similar residual reduction per work unit). In fact, when e = 10% the solution is achieved to the level
of truncation error in just two 3-D cycles (about 50 work units).

It is illustrative to study the behavior of point and line Gauss-Seidel for these cases. The line smoother is
more efficient than the point-wise version for the isotropic problem. The work per cycle is slightly greater in

the line version, however the asymptotic convergence rate of the line version is 1.42 times lower (better). On
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F1G. 4. Residual versus work units for 3-D V(2,1)-cycles to solve four anisotropic equations on a 82x32x82 uniform grid
with the following five smoothers: point-wise Gauss-Seidel (point), y-line Gauss-Seidel (plus), (z,y)-plane Gauss-Seidel with
ezact solver in each plane (square), (z,y)-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane (star), and (z,y)-plane
Gauss-Seidel with one 2-D V(1,0)-cycle in each plane (circle). The smoother used in the 2-D cycles is y-line Gauss-Seidel.

Each symbol represents a 3-D cycle in order to compare the complexity of the cycles of different smoothers.

the other hand, the plane smoother exhibits a less efficient behavior for the isotropic case. The performance
of the plane smoother is twice as slow as the observed performance of the point smoother. The plane
smoother reduces the error more per multigrid cycle than the line smoother but its operation count is so
much higher that it ends up being slower form the isotropic case. The computer program used to generate
the present results is not fully optimized. It was coded to deal with many different methods and situations
and so this result may change some with coding practice.

As was expected, the point smoother gives very poor convergence rates for the anisotropic problems.
However, the line smoother performs very fast when e > €1, as is demonstrated in Section A.5. This is
because a single direction dominates the solution in this case.

Fig. 5 shows the residual versus work unit for 3-D V(1,0)-cycles to solve the isotropic equation on four
32x32x32 stretched grids with the following five smoothers:

e point-wise Gauss-Seidel (point),

e alternating-line Gauss-Seidel (plus),
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e alternating-plane Gauss-Seidel with exact solver in each plane (square),
e alternating-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane (star), and
e alternating-plane Gauss-Seidel with one 2-D V(1,0)-cycle in each plane (circle).
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Fia. 5. Residual versus work unit for 3-D V(1,0)-cycles to solve the isotropic equation on four 32z32z32 stretched
grids with the following five smoothers: point-wise Gauss-Seidel (point), alternating-line Gauss-Seidel (plus), alternating-plane
Gauss-Seidel with exact solver in each plane (square), alternating-plane Gauss-Seidel with one 2-D V(1,1)-cycle in each plane
(star) and alternating-plane Gauss-Seidel with one 2-D V(1,0)-cycle in each plane (circle). The smoother used in the 2-D
cycles is alternating-line Gauss-Seidel. FEach symbol represents a 3-D cycle in order to compare the complexity with the cycles

of different smoothers.

The smoother used in the 2-D cycles to solve the planes is alternating-line Gauss-Seidel.

In the two cases of stretching ratio equal to 1.0 and 1.25, the approximate plane solver with one V(1,0)-
cycle performs better than either the approximated solver with one V(1,1)-cycle or the exact solver. However,
as the stretching ratio increases, the performance for the approximate plane solver with one V(1,1)-cycle
improves. All cases show that the exact solver gives much worse performance.

Fig. 5 also shows an unexpected behavior of the alternating-line smoother. This optimal behavior is due
to the use of stretching along the three directions that produces high discrepancies for the local values of
the anisotropy in each cell, and therefore the local dominance of one of the directions. In fact, the numerical

results obtained with grids stretched along just one direction show a poor behavior of the alternating-line
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smoother.

6. Comparison of the plane smoothers. Fig. 6 shows residual versus work unit for 3-D V(2,1)-

cycles to solve four anisotropic equations on a 32x32x32 uniform grid with the following five (x,y)-plane
smoothers:

e Gauss-Seidel (solid),

o zebra Gauss-Seidel (dashed),

o four-color Gauss-Seidel (star),

e Jacobi with damping 0.7 (dotted), and

e Jacobi with partial damping 0.7 (dash dot).
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F1G. 6. Residual versus work unit for 3-D V(2,1)-cycles to solve four anisotropic equations on a 32x32x32 uniform grid
with the following five (z,y)-plane smoothers: Gauss-Seidel (solid), zebra Gauss-Seidel (dashed), four-color Gauss-Seidel (star),
Jacobi with damping 0.7 (dotted), and Jacobi with partial damping 0.7 (dash dot). One 2-D V(1,1)-cycle is used to solve each
plane. The smoother used in the 2-D cycles is the y-line version of the one used in the 3-D cycles.

The best results are consistently obtained with the four-color plane Gauss-Seidel method.

On the other hand, Fig. 7 shows residual versus work unit for 3-D V(1,1)-cycles to solve the isotropic
equation on four 32x32x32 stretched grids with the following five alternating-plane smoothers:
e Gauss-Seidel (solid),
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zebra Gauss-Seidel (dashed),
four-color Gauss-Seidel (star),
Jacobi with damping 0.7 (dotted) and

Jacobi with partial damping 0.7 (dash dot).
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F1G. 7. Residual versus work unit for 3-D V(1,1)-cycles to solve the isotropic equation on four 32x32z32 stretched grids
with the following five alternating-plane smoothers: Gauss-Seidel (solid), zebra Gauss-Seidel (dashed), four-color Gauss-Seidel
(star), Jacobi with damping 0.7 (dotted) and Jacobi with partial damping 0.7 (dash dot). One 2-D V(1,1)-cycle is used to

solve each plane. The smoother used in the 2-D cycles is the alternating-line version of the one used in the 3-D cycles.

In this case, the best results are obtained with the lexicographic ordering.

In general, the three Gauss-Seidel plane implicit methods and the Jacobi plane implicit method with
partial damping give similar results with anisotropic equations. Jacobi with damping performs worse because
its smoothing factor does not improve with the anisotropy. However, four-color Gauss-Seidel performs better
in the isotropic case. About the parallel implementation, zebra Gauss-Seidel, four-color Gauss-Seidel and
Jacobi methods are fully parallelizable, however the Jacobi method is likely to give better parallel efficiencies
because of its coarser granularity.

The improvement of the convergence rate for strong anisotropies is not expected to deteriorate con-
siderably for increasing mesh sizes. The residual versus work units for 3-D V(2,1)-cycles to solve four

anisotropic equations on a uniform grid with (x,y)-plane four-color Gauss-Seidel and the isotropic equation
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on four stretched grids with alternating-plane four-color Gauss-Seidel for grid sizes 32x32x32, 64x64x64 and
128x128x128 are given in Fig. 8 and 9 respectively. These figures show that the good behavior for strong
anisotropies deteriorates slightly for larger grid sizes. The discrepancies in the isotropic case show the de-

pendence of the convergence rate, p, on the problem size; it tends to p, the predicted convergence rate for
periodic boundary conditions.
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F1G. 8. Residual versus work unit for 3-D V(2,1)-cycles to solve four anisotropic equations with (z,y)-plane four-color
Gauss-Seidel with the following grid sizes: 32x32x32 (dotted), 64x64x6/ (dash dot) and 128x128x128 (solid). One 2-D V(1,1)-
cycle is used to solve each plane. The smoother used in the 2-D cycles is y-line four-color Gauss-Seidel.

7. Efficiency considerations. One of the drawbacks mentioned in the literature against plane relax-
ation smoothers is their inefficiency on parallel computers. A plane relaxation sweep implies the solution of a
large number of tridiagonal systems of equations. For example, with (x,y)-plane relaxation and using y-line
relaxation inside each plane, it is necessary to solve ning systems of equations (I = 1,...,n1;K = 1,...,n3)
in each 3-D smoothing sweep
(7.1) e1(—2urj k) +e2(urj—1,x — 2ur jx +urj1,x) + (—2urj k) = 11;];3(

j = 1, ey N2

The improvement of the parallel efficiency of tridiagonal solvers has been a focus of intensive research
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Fic. 9. Residual versus work wunit for 3-D V(1,1)-cycles to solve the isotropic equation on four stretched grids
with alternating-plane four-color Gauss-Seidel with the following grid sizes: 32z32z32 (dotted), 64x64z64 (dash dot) and
1281128x128 (solid). One 2-D V(1,1)-cycle is used to solve each plane. The smoother used in the 2-D cycles is the alternating-
line four-color Gauss-Seidel.

in the last few years, see for example [7, 9, 11, 13]. Most of these methods improve their computational
count when the system is strongly diagonally dominant, which is a likely situation in Eq. (7.1). Tridiagonal
systems could also be solved by a multigrid algorithm. It is expected that the solution could be reached in
just one 1-D V(1,1)-cycle (extending the results obtained in Section 5 for the 2-D cycles to solve the planes).
The smoothing sweeps can be implemented so as to make more efficient use of cache memory than sequential
tridiagonal solvers. The parallel tridiagonal solvers sweep over the data stored in memory at least two times
and so the data within the cache is invalidated for large problems. However, the 1-D multigrid method can
be implemented to pass over the data just one time for a number of sweeps, improving its temporal locality
[6, 25].

Another easy and efficient alternative for dealing with the parallel implementation of the plane solvers
is by blocking the smoother. The blocks are distributed across the processors and the plane relaxation is
performed only within the blocks of the grid. The blocking of the plane relaxation also allows the application
of plane smoothers with multi-block structured grids because only a local definition of the line or plane is

needed. The blocking improves the temporal locality of the smoother. If the block fits entirely in cache, the
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plane solver can pass over the data just one time for a number of sweeps and so the smoother makes more
efficient use of the cache memory. Moreover, it provides an additional advantage. A different smoother could
be used in each block depending on the local strength of the anisotropy and the stretching direction. For
example, plane smoothers might be confined to the blocks in the region with stronger anisotropies. However,
this blocking alternative causes a deterioration of the smoothing properties of the method. Jones and Melson
show in [12] that for line smoothers in the 2-D case, true multigrid efficiency is achieved only when the block
sizes are proportional to the strength of the anisotropy. Further, the blocks must overlap and the size of
the overlap must again be proportional to the strength of the anisotropy. (True multigrid efficiency is the
convergence and operation count obtained by multigrid using a point Gauss-Seidel smoother on an isotropic

elliptic problem.)

8. Conclusions and future directions. We have shown numerically and analytically the smoothing
factors of traditional plane relaxation methods with Dirichlet boundary conditions. The smoothing perfor-
mance of the following relaxation methods have been investigated for the multigrid solution of a discrete
elliptic model equation on a cell-centered grid with strong anisotropies:

e Plane Jacobi with damping

e Plane Jacobi with partial damping
e Plane Gauss-Seidel

e Plane zebra Gauss-Seidel

e Plane four-color Gauss-Seidel

e Line Gauss-Seidel

All of the plane-implicit schemes studied but plane Jacobi with damping show a linear decrease of smooth-
ing factor with increasing anisotropy strength, regardless of the relative strengths of the two anisotropies
possible in 3-D problems considered. The good behavior of the plane smoothers deteriorates very slightly
with an increase in the number of cells per side in the grid. Consequently, we feel that their excellent perfor-
mance can be maintained for large practical problems. Although line smoothers give very good results when
one of the anisotropies is much larger than the other, line smoothers perform poorly when both anisotropies
are similar and, hence, can not be considered for a robust method.

The numerical results indicate that zebra Gauss-Seidel does not perform as well as expected on cell-
centered grids. In fact, the lexicographic order Gauss-Seidel obtains better convergence rates and four-
color plane Gauss-Seidel becomes an attractive smoother because of its good convergence rates and parallel
properties. Plane Jacobi with partial damping is also a very good alternative; it performs worse in the
isotropic case but exhibits coarser granularity in a parallel setting.

The practical feasibility of plane relaxation as a multigrid smoother has been demonstrated. The solution
of the 2-D boundary-value problem corresponding to each plane can be approximated with just one 2-D
multigrid cycle. The same behavior can be expected if 1-D multigrid is applied to the solution of the
tridiagonal systems of equations involved in the plane solution. As a result, alternating-plane smoothers are
just two times slower than point-wise smoothers in the isotropic case and are robust multigrid smoothers
that are orders-of-magnitude faster for anisotropic operators. Moreover, plane smoothers are an alternative
that are easy to program, both on sequential and parallel computers.

We are interested in the applicability of plane smoothers with multi-block grids. Therefore, we will
continue working on block-structured plane smoothers. In particular, we want to study the behavior of
blocked plane smoothers and determine if the results relating block size, overlap, and anisotopy strength

obtained by Jones and Melson in [12] hold in the 3-D case and in more complicated pde’s and problem
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geometries. We feel that the smoothing performance will not suffer excessive deterioration with domain

decomposition.
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Appendix A. Smoothing factors of plane relaxation methods.

A multigrid method consists of two different components; a smoother to remove the high-frequency
components of the error in the solution and a succession of grid coarsening to eliminate the low-frequency
components by using the smoother on such grids. The behavior of a multigrid method strongly depends on
the smoother. Indeed, the development of a good smoother is the critical step when developing multigrid
algorithms.

A simple and convenient tool to study the smoothing properties of a relaxation method is the Fourier
smoothing analysis. The results of this analysis give a measure of the quality of a numerical method.
Occasionally, it is too involved to obtain an analytical expression for the smoothing factor and so it must be
calculated numerically. However, explicit formulas are preferred because they give more information about
the dependence of the smoother on the involved parameters.

The Fourier smoothing analysis does not consider the intergrid transfer process and the discrepancy
between the coarse grid and fine grid discrete approximations of the operator, so the actual numerical
performance can vary slightly from the predicted performance. To obtain a more accurate prediction, a two-
level analysis, which takes into account the operations and discrepancies between levels, must be applied.
Results of the Fourier analysis can be found in the literature, for example see [27, 30, 31] for the 2-D case
and [32] for the 3-D case (not including results presented in this report).

In spite of the fact that the Fourier analysis gives the same results for vertex-centered and cell-centered
grids, we have noticed discrepancies between both cases with zebra plane Gauss-Seidel in our numerical
experiments. We show how the lexicographic order performs significantly better than the zebra ordering.
These discrepancies have also been reported by Gjesdal [8] for the 2-D case. They may be caused by the
coarse grid correction and may be reflected in a two-level analysis.

Our methodology and notations are similar to those used by Wesseling [31]. Assume a matrix represen-

tation of the system of equations (3.3) denoted by
Lu=f
and let the smoothing method given by the following splitting
u=S8Su+M1f S=MINM-N=L
The error matrix is M ~'N and the error after v iterations of the smoothing method is given by
emtl = §vem

We can expand the error in a Fourier series of the eigenfunctions or local modes ¢ (6) of S

e = cgs(0),45(0) = €7°

0co
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with i =+/—1,j€ I,and 0 € ©

I= {] ] = (j17j27j3)aja = 172a vy Ny, = ]-a a3}
_ 2mkq, N, N,

—{0:0=(01,02,05),0, = 200 o= Do Do _q
S) { (1; 2, 3)7 Mo ) ) « 3}

Hence
STP(0) = A7(0)¢(0)
where A(f) is the eigenvalue corresponding to ¢ () and
gt = \1(0) ey

The eigenvalue is the amplification factor, so the largest of the eigenvalues in absolute value, the so
called spectral radius, determines the rate of convergence of the relaxation method.

We can distinguish between high-frequency or rough eigenfunctions (f € ©,) and low-frequency or
smooth eigenfunctions (6 € ©;). If we want to study the rate of convergence of the relaxation method the
damping factor is given by the largest of the eigenvalues over all frequencies (©). However if we are interested
in the smoothing factor of the method we must consider just the rough components (6,.). Rough and smooth
components are given by

™ T

@S:@ﬁ(—5,§

)3; @r =0 \ 95
Let us define p as the local mode smoothing factor
p=sup{]\(0)| : 0 € ©,},

so that the error over the rough components is multiplied by a factor p after each smooth iteration. Note
that p depends on the problem size n,, because ©,. depends on the problem size.

However, ©,. tends to

as ng T, and we can define
7= sup{|]A©)] : 0 € B,}.

even so p may not be independent on n, because A(f) may depend on the problem size. For example, in time
dependent problems the dependence of A(f) on the temporal step improves considerably the convergence
rate of traditional relaxation methods [17].

In the local Fourier analysis it is easier to obtain p, but we have to take into account that for practical
values of n,, (especially in the 3-D case where n, tends to be much smaller than in 1-D and 2-D cases due to
computer memory limitations) p may be much smaller than p and so the behavior of the smoothing method
might be better than the predicted based on p.

The above definitions consider standard coarsening. With semicoarsening there is at least one direction
in which the space step is not doubled. The Fourier modes in those directions are resolved on all grids and

so they are not included in ©,..
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The previous analysis has been performed considering periodic boundary conditions. Though the periodic
analysis gives accurate predictions for our problem with Dirichlet boundary conditions for weak anisotropies,
it has been observed that better agreement with the numerical results can be obtained by excluding from
the analysis the Fourier modes with % = 0 since the error at the boundary is always 0, see [4]. In fact, the
numerical results obtained for strong anisotropies are accurately explained using this approximation.

Therefore, when studying the problem with Dirichlet boundary conditions we consider the wave numbers
given by

21kq N Na

D _—
={0:0=(06,.0,,6 Ha: ,ka 7ka:_ g e
C) { (17 2 3)7 Ney #0 2 2

and the smoothing factor is defined as
pp = sup{|N6)| : 6 € OP}
The relation between the three smoothing factors is the following
pPD S P =P

The periodic problem appears to be a pessimistic limit of the Dirichlet problem and the Dirichlet problem
tends to the periodic one for very large mesh sizes.

The eigenvalue problem S (0) = A(6)1(0) has to be solved in order to determine the three smoothing
factors. If the coefficients are constant, the grid size is uniform, and the boundary conditions are periodic,
the eigenvalues are given, in stencil notation,by
Y, NG 0)
=, MG 0)

The finest grid used in the numerical experiments of this section has 32 points in each direction and all

A(0)

levels in the grid hierarchy (4.1) are visited during a cycle. All the numerical experiments reported deal with
the numerical solution of Eq. (3.3) on the unit cube 2 = (0,1) x (0,1) x (0,1) with a right-hand side of

flzyy,2z) = —(a+b+c)sin(x +y + 2)
Dirichlet boundary conditions are enforced on the boundary by evaluating
u(w,y,2) = sinfw+y + 2)

The experimental convergence factor presented in the tables is the asymptotic average residual reduction
factor of one 3-D FAS cycle

(A1) e e

=l
or the average residual reduction factor when the reduction per cycle is so high that the rounding errors do

not allow achieving an asymptotic behavior

_ Il
L =
(17012

(A.2)

In the latter case the simulation is performed until the initial residual is reduced by a factor 10~'2. Lower
values for this tolerance factor cannot be reached on 64-bit machines due to roundoff errors.

The 2-D problems in each plane can be solved exactly using enough 2-D FAS cycles. In Section 5 results
are presented of a study on the use of multigrid cycles to solve these 2-D problems. In practice, the exact

solutions can be replaced by approximate ones, considerably reducing the execution time of the solver.
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A.1. The plane Jacobi method with damping. The (x,y)-plane Jacobi method with damping
applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

e
[M]k-1 =w! 0 [M]} =w! —€1 24261 +2e¢ —en | [M]it1 =w! 0
—e
0
[N]g—1 = 1 [Nlg=1]0 0 0 |[Ngt1= 1

0

The amplification factor is given by
w cos(b3)

AO)=1—w+

1+ €1(1 —cos(1)) + e2(1 — cos(h2))

Note that A(6) is real and symmetric, A(§) = A(—0), and so we only have to consider 8, > 0 to obtain the
smoothing factor.
Periodic boundary conditions

It is easy to find that the smoothing factor is then given by

_ T T
(A.3) p= max{|)\(§,0,0)|, [A(0, §,O)|, [A(0,0,m)|}
wer wWeg
= 1-— 1-— 1-2
mar{|l = 25| 1= 2 1 )

Note that w must be lower than 1 to obtain a smoothing factor lower than 1.
Let us assume n1 = ne = ng3 = n and €; < €3 , so the optimum value of the damping parameter to
minimize the smoothing factor is given by

_2+261

A4 =
( ) w 2+3617

and with this optimum damping parameter we have

24 €1

A. 5=
(A.5) P =0 30

If ¢, < 1 the optimum smoothing factor tends to 1, for example p = 0.99 for ¢; = 1072, Therefore,
in such cases, (x,y)-plane relaxation is not a good smoother for our problem and we should use (x,z)-plane
relaxation.

On the other hand, for €; > 1 the optimum value of w depends slightly on €;, we have % >w> % and
3>p>1forl1<e <o

For w lower than the optimum one the smoothing factor is given by

— wep
A6 =1-
(A.6) p e
and for a w greater than the optimum one
(A7) p=|1-2w|

Dirichlet boundary conditions
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To perform the study with Dirichlet boundary conditions we exclude from analysis the Fourier modes
with 6, = 0. Doing so, defining ¢ = %’T and considering n large enough to approximate (1 — cos(y)) by Qn%
we find

pp-—wwwﬂA( L2, 0)]s A (s 5 ,¢H|A@9¢7)H

=maz{|l —w+ wcos(gp) 1 —w w coslp) I,
1+ €1 + e2(1 — cos(p)) 1+ e1(1 —cos(p)) + €2
1 = 1}
1+ e1(1 —cos(p)) + e2(1 — cos(e))
W 1_271' w _E
:mam{|1—w+(—"22)ﬂz| 1 —w %L
146 +e I1+esr +e
w

l-—w-—
| 1 + €1 2;;22 + 27\'2 |}
We obtain the following optimum damping parameter (always considering €1 < €3)

2r? 2r2
€1+ e + T 2+61 —|—62
272 22 22
1+e +edy 1+eass +els

(A.8) w=2 )

and the corresponding smoothing factor

2n? | 2n? 2n? | 2n?
€1+ ey + 2 2+61 —|—62 €1+ e s + o 2+61 —|—62

2)( 5+ )_

1+61+6227LL22 1+61——|—622” 1+61+622nL2 1+€1—+62

(A9)  pp=(

If n > €1, € the previous optimum damping and smoothing factors tend to Eq. (A.4) and Eq. (A.5)
respectively. Otherwise, the optimum damping parameter (A.8) tends to 1 and the optimum amplification
factor (A.9) tends to 0 as O(é) if n < €, or as O(é) if n <« e3. Therefore, the plane Jacobi method with
w =1 is a very good smoother for strong anisotropies with Dirichlet boundary conditions. Observe that this
result totally contradicts the result obtained with periodic boundary conditions.

For damping parameters lower than the optimum one the smoothing factor is given by
pp=1—w+
and for a damping greater than the optimum one the smoothing factor is given by

1 |
w
1 61 €22 27r2

pp = |1 —w+

Therefore,

e If n>> ¢; and n > €5 the smoothing factor tends to the periodic case. See for example in Table A.1
how the results for €1,e2 < 1 fully agree with Eq. (A.4) for the optimum damping parameter and
with Eq. (A.6) and (A.7) for the smoothing factor.

e If n < ¢; and n < €3 the smoothing factor tends to

1
€1 + €2

pp =1—w+O( Jw

as €1 and ey become stronger. Table A.1(a), for e;,ea > 102, presents some results that verify
the previous expression. Note that the smoothing factor falls linearly with the strength of the

anisotropies when the damping parameter is equal to one.
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w

€ e | 02]04]06]08] 10
1078 ] 1078 || 0.99 | 0.99 | 0.99 | 0.99 0.98
1072 | 1072 || 0.98 | 0.98 | 0.98 | 0.98 0.98

1 1 0.90 | 0.80 | 0.70 | 0.59 0.98
102 | 10% | 0.80 | 0.62 | 0.42 | 0.23 0.46
10* | 10* | 0.80 | 0.60 | 0.40 | 0.20 | 3.6 x 10~*
106 | 10 | 0.80 | 0.60 | 0.40 | 0.20 | 3.7 x 10~¢
108 | 10® | 0.80 | 0.60 | 0.40 | 0.20 | 5.7 x 1078

(a) €1 = €2

w
a| e 02]04]06 08 10
11 1 ]0.90]0.80 | 0.70 | 0.59 0.98
1 |10%21 0.81 ] 0.74 | 0.62 | 0.50 0.65
1 | 10* || 0.80 | 0.60 | 0.40 | 0.20 | 9.6 x 10~*
1 110 || 0.80 | 0.60 | 0.40 | 0.20 | 1.0 x 10>
1 | 10% || 0.80 | 0.60 | 0.40 | 0.20 | 1.0 x 107

(b) 1 = 1 and various €9

w

e €2 0.2 \ 0.4 \ 0.6 \ 0.8 \ 1.0

107411072 | 0.99 | 0.99 | 0.99 | 0.99 0.98
1074 1 0.99 | 0.99 | 0.99 | 0.99 0.98
1074 | 10% | 0.93 | 0.87 | 0.80 | 0.73 0.66
107* | 10* | 0.80 | 0.60 | 0.40 | 0.20 | 9.8 x 10~*
10=% | 10 || 0.80 | 0.60 | 0.40 | 0.20 | 1.0 x 107
10=% | 10%® || 0.80 | 0.60 | 0.40 | 0.20 | 1.0 x 10~7

(c) €1 = 10~* and various e;

TABLE A.1

Computational convergence factors, pe, of one 3-D V(1,0)-cycle with (z,y)-plane Jacobi with damping parameter w

e If n>> ¢; and n < €3 the smoothing factor tends to
pPD = 1—w+0(l)w
€2

as €2 becomes stronger. Table A.1 (b) and (c) give some numerical results that agree with the
previous expression. Observe how for low values of ¢; (even though ¢; < 1) the method is a very

good smoother if €9 is large enough.
The previous discussion concludes that the periodic case can be considered as an asymptotic limit of
the Dirichlet case when n tends to oo (n > €). However, there is a huge difference between the cases for

practical grid sizes. The Dirichlet case presents very good convergence rates with anisotropy values for which
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the periodic case does not converge. The multigrid algorithm reaches the solution accurate to the truncation
error in just a few cycles for a strong value of just one of the anisotropies.

The behavior of the smoother with Dirichlet boundary conditions is attributed to the fact that as the
anisotropy grows, the method becomes an exact solver and so the error is reduced by a factor 1 — w. The
optimum damping parameter depends strongly on € in this case. One way to avoid this and get good
convergence rates for all w is to apply the damping parameter just to the diagonal component of the method
in the explicit direction which is the plane Jacobi method with partial damping. In this way the method

becomes an exact solver for strong anisotropies and all damping parameters.

A.2. The plane Jacobi method with partial damping. The (x,y)-plane Jacobi method with partial
damping applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

—ey
[M]—1 = 0 Ml = | —e1 2w ' +261+20 —€g | [M]pg1 = 0
ey
0
[Nlk—1 = 1 [Nlk=10 0 0 |[N]gt1= 1
0

The amplification factor is given by

B 1 —w(1 —cos(fs))
Al) = 1+ wer(1 —cos(1)) + wea(1 — cos(f2))

We only have to consider 6, > 0 because A(f) is real and symmetric, A(6) = A(—0).
Periodic boundary conditions

The amplification factor is given by
(A.10) 7= maz{|A(5.0,0)[, A0, 3, 0)|, [A(0,0, Z)I. A0, 0,m)]}

|

= max{]| [ [1—wl, [1 = 2w}

l+ew '14 6w

Note that w must be lower than 1 to obtain an amplification factor lower than 1.

Let us assume n; = no = ng = n and €1 < €3, so the smoothing factor is given by

1

A1l p= l—w, ——
(A1) p = maz{l -, 1.

|1 —2w|}

If €; < 1, the optimum smoothing factor tends to 1, for example p = 0.99 for ¢; = 1072, Therefore, in
such a case, (x,y)-plane relaxation is not a good smoother and (x,z)-plane relaxation should be used.

If 1 <€ < 3, the optimum damping parameter can be obtained by equating the second and the third
functions in Eq. (A.11). For example, for e, = 1, the optimum damping parameter is equal to 0.78 and the

optimum smoothing factor is 0.56. For w lower than 0.78, the smoothing factor is given by

1
A12 = ——
(A.12) ey
and for a damping parameter greater than 0.78
(A.13) 7=1]1-2uw|
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On the other hand, if ¢; > 3 the smoothing factor does not depend on the anisotropy and it is given by
p=maz{l —w,|1 — 2w|}

and so the optimum smoothing parameter is %, corresponding to a damping of % For w lower than the

optimum one, the smoothing factor is given by

(A.14) p=1-w
and for a damping greater than the optimum

(A.15) 7=1]1-2uw|

Dirichlet boundary conditions
To perform the study with Dirichlet boundary conditions we exclude from analysis the Fourier modes

with 6, = 0. Doing so, defining ¢ = 27” and considering that n is large enough we obtain

™ ™
PD = max{|/\(§, ©s ¢)|7 |/\(507 Py @)'a |)\(§0; 5077T)|7 |/\(507 2 7T)|}

2
— 1 —w(1—cos(y)) ] 1 —w(1—cos(y)) |
a 1 4 wey +wea(l —cos(p)) " '1 + wer (1 — cos(p)) +wea '
1—w 1—2w

| I}

1+ wer(1 —cos(p)) + wea (1 — cos(<p)) 14+ wer(1 — cos(p)) + wea (1 — cos(e))

g 1w
= mazx{| * || 7 |
1+ we; —|—w62 14 we 2 +w
1—w 1—2w
1+ we & —|—we ||1—|—w612nL22+weQ2nL22|}

These expressions coincide with (A.lO) if n > e, €.
Otherwise, if n < €1, €2, and always considering €; < €, the optimum damping factor remains % with a
corresponding optimum smoothing factor
1
3

PD = -
1+ §2n2 (€1 + €2)

Note that the previous optimum amplification factor tends to 0 as O(ﬁ) For damping parameters lower
than the optimum one the smoothing parameter is given by
1l-w

1+w61—+we 2 >

pPD =

and for a damping greater than the optimum one the smoothmg factor is given by
1—-2w

=
1+w61—2’r + weg 2”

pp = |

On the other hand, if €; is small enough the optimum smoothmg parameter tends to 1 for increasing

values of €5. For damping parameters lower than the optimum one the smoothing parameter is given by

1 2
_ — 7
D =
P 1+w61+w622”

and for a damping greater than the optimum one the smoothing factor is given by
1—-2w |
1+ we; QnL; + WEQQYLL;

pD =

Therefore,
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Computational convergence factors, pe, of one 3-D V(1,0)-cycle (z,y)-plane Jacobi with partial damping parameter w

e If n > ¢ and n > ey the smoothing factor tends to the periodic case. See for example how the

analytical expressions obtained for the periodic case (Eqs. A.12 and A.13 for ¢; = 1 and A.14 and

TABLE A.2

w
€1 €2 0.2 0.4 0.6 0.8 0.9 1.0
10-8 | 1078 0.99 0.99 0.99 0.99 0.99 0.98
1072 | 1072 0.99 0.99 0.99 0.99 0.99 0.98
1 1 0.81 0.70 0.65 0.55 0.77 0.98
3 3 0.80 0.59 0.41 0.57 0.76 0.95
10 10 0.76 0.56 0.35 0.53 0.71 0.88
102 | 102 0.65 0.42 0.23 0.31 0.39 0.46
104 | 10* || 29%x107% | 1.2x1073 | 6.2x107% | 4.1 x107* | 3.7x107* | 3.6 x 1074
10 | 10% || 3.1x107° | 1.2 x107° | 6.3 x107% | 42x 1076 | 3.0 x 1076 | 3.7 x 106
108 | 10® || 31x1077 | 1.2x 1077 | 6.4x107% | 44x1078 | 4.0x107% | 5.7 x 1078
(a) e1 = €2
w
e | e 0.2 04 | 06 | 08 0.9 1.0
1|1 0.81 0.70 0.65 0.55 0.77 0.98
1] 10 0.77 0.66 0.58 0.55 0.72 0.92
1| 102 0.73 0.58 0.48 0.40 0.53 0.65
1110 ] 58x107% | 26x1073 | 1.6x1073 | 1.2x 1073 | 1.0x 1073 | 9.6 x 1074
1 110%] 6.7x107° | 28x107° | 1.7x107° | 1.2x107° | 1.1 x 107> | 1.0 x 10~®
11108 ] 6.7x1077 | 28x1077 | 1.7x 1077 | 1.2x 1077 | 1.1 x 1077 | 1.0 x 107
(b) €1 = 1 and various €9
w
€1 € 02 | 04 | 06 0.8 0.9 1.0
1074 | 1072 0.99 0.99 0.99 0.99 0.99 0.98
1074 1 0.99 0.99 0.99 0.99 0.99 0.98
107% | 10 0.99 0.98 0.97 0.96 0.95 0.98
107% | 102 0.91 0.84 0.77 0.72 0.69 0.66
1074 ] 10* || 5.9%x1072 | 26x1073 | 1.6 x 1073 | 1.2x 1073 | 1.0 x 1073 | 9.6 x 10~*
1074 | 10% || 6.7x107° | 2.8 x107° | 1.7x 1075 | 1.2x107° | 1.1 x10® | 1.0 x 10~°
1074 ] 10% || 6.7x1077 | 28 x 1077 | 1.7x 1077 | 1.2x 1077 | 1.1 x 1077 | 1.0 x 1077
(c) €1 = 107* and various e,

A.15 for €5 = 3) accurately agree with the numerical results presented in Table A.2(a).
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e If n < €3 and n K €y the smoothing factor for a damping lower than the optimum one, %, tends to
_ 1l-w
PD = wO(el + 62)

and for a damping parameter greater than the optimum one tends to
| 1—-2w |
PD = wO(el + 62)
as €1 and es become stronger. Table A.2(a), for €1, e > 102, contains some results that verify that
the smoothing factor falls linearly with the anisotropy and is a function of w.

e If n > ¢; and n < ey the smoothing factor for a damping parameter lower than the optimum one

tends to
1
PD = wO(e2)
and for a damping greater than the optimum one tends to
. 1—-2w |
Pp = wO(e2)

as € becomes stronger. The optimum damping parameter moves from 0.78 to 1. Tables A.2 (b) and
(c) give some numerical results that verify the previous expressions. This method is a very good

smoother for very low values of €; when €5 is large enough.

A.3. The plane Gauss-Seidel method. The (x,y)-plane Gauss-Seidel method with partial damping
applied to Eq. (3.3) corresponds to the following splitting, in stencil notation

—e
[Mp_1 = -1 Ml =] —e1 2+4+2e14+260 —e | [Mg1 = 0
e
0
[N|p_1 = 0 [Nlgk=10 0 0 | [Ngt1 = 1
0
The amplification factor is given by
ei93

AO) =

2 — e~ 1 2¢; (1 — cos(f1)) + 2e2(1 — cos(6y))

Note that A(f) is complex but symmetric, |A(6)] = |A\(—6)|, and so we only have to consider 6, > 0.
Periodic boundary conditions

It is easier to find the smoothing factor if we rewrite the amplification factor as

1
\/(2 — cos(63) + 2¢1 (1 — cos(61)) + 2ex(1 — cos(h2)))? + sin’(6s3)

AO)] =

From the previous expression we obtain

™ ™ T
(A'16) p= max{|)‘(§7 Oa 0)') |)‘(Oa 55 0)') |)‘(Oa 07 a)l}

(L y
= max E—
1-1—261,14-2627\/5
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Let us assume n; = no = n3 =n and €; < €9, the smoothing factor is then given by

P =mas{——. )
O T N

= for ¢; > ‘/52_1 ~ 0.6 and ﬁ for ¢; < 0.6. For ¢; < 0.6 the

smoothing factor tends to 1 and (x,y)-plane relaxation is not a good smoother; we should use (x,z)-plane

Therefore, the smoothing factor is

5

relaxation.
Lo [ e |
1078 | 1078 0.99
1072 | 1072 0.96
0.66 | 0.66 0.43
1 1 0.34
102 102 0.20

108 108 || 3.3 x 1078

1] 1 0.34
1 | 102 0.25
1]10* | 6.1x10°4
1 ]10° | 6.1x10°°
1
)

10% || 6.2 x 1078

(b) €1 = 1 and various e

La [ e |

10=% | 1072 0.99
10~4 1 0.97
10~% | 102 0.50

107% | 10* || 6.1 x 107
107* | 10% || 6.1 x 1076
107* | 10® || 6.2x 108

(c) €1 = 10~* and various e;

TABLE A.3
Computational convergence factors, pe, of one 3-D V(1,0)-cycle with (x,y)-plane Gauss-Seidel

Dirichlet boundary conditions

Excluding from analysis the Fourier modes with 6, = 0, defining ¢ = 27—’; and considering that n is large

enough we have

T ™ ™
PD = max{p‘(ia 2 90)|7 p‘(@v 57 90)|7 p‘(@v 2 §)|}
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1 1

= maz{| |, | I,
\/(2 — cos(ip) + 261 4 2ea(1 — cos(y)))? + sin®(p) \/(2 — cos(ip) + 261 (1 — cos(p)) + 2€2)2 + sin?(ip)
1
| V(2 + 261 (1 — cos(y)) + 2€a(1 — cos(p)))? + 1 I
1 1
— maa] || |,
\/(1+ + 21 + 2e25)2 4 27 \/(1+ + 26125+ 2¢)2 4 47

1
\/(2+2€1 + 26227 )2 41

| 1}

These expressions coincide with (A.16) if n > €1, €2. For example Table A.3(a) shows that the experimental
convergence rate when e = 0.66 is 0.43, which verifies the analytical prediction — 7 of the periodic case.

Otherwise, the smoothing factor is
1
pp = |
\/(2—|—261 + 222 )2 41

when n < €1, €2. Note that in this case the smoothing factor tends to 0 as O( ) for strong anisotropies.

€1 +e
This dependence of the smoothing factor on the anisotropy is verified numerically by the results presented

in Table A.3.

However, for small values of €; the smoothing factor tends to
1
Pp = 22 22 2n2
VO3 420 420252 4 2

If €; is small enough, pp can be approximated by

1

A7 - -
( ) pD = 1 + 262 2772

and the smoothing factor decreases as O(é) for increasing e values. This behavior is also exhibited by the
numerical experiments presented in Table A.3 (b) and (c). Again we find that very good convergence rates
can be achieved even though one anisotropy is lower than one.

The numerical results show that it does not pay to use SOR (w > 1) or damped Gauss-Seidel (w < 1)

as a smoother.

A.4. The plane zebra Gauss-Seidel method. The analytical study for this case is more involved
because the Fourier modes are not invariant under this method. That is, the zebra ordering does not preserve
the modes. However, the study can be performed considering that the operation of an iteration on a ¥(6)
mode results in a combination of the mode and its harmonics [31]. In this section, we will restrict ourselves
to the presentation and discussion of the numerical results.

In reference [32], Yavneh presents results of his study of the zebra Gauss-Seidel method in all combi-
nations of block and point relaxation with full and partial coarsening for periodic boundary conditions. He

indicates that the smoothing factor with r relaxation sweeps for the present case is given by

}

1, 2r—1, 1
1+61)’( 2r >[2(2r—1)]

S=

(A.18) 7 = max{(
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cycling strategies of the 3-D cycle
o) oo ay]ey]a
GS 0.34 | 0.34 | 0.14 | 0.14 | 0.13 | 0.08 | 0.08
ZGS | 036 | 0.42 | 0.20 | 0.13 | 0.24 | 0.17 | 0.17

4cGS || 0.28 | 0.35 | 0.14 | 0.14 | 0.12 | 0.10 | 0.10
TABLE A.4
Computational convergence factors, pe, of 3-D cycles for different V-cycles strategies with (z,y)-plane Gauss-Seidel (GS),
(z,y)-plane zebra Gauss-Seidel (ZGS) and (z,y)-plane four-color Gauss-Seidel (4¢GS) as smoothers

The numerical results presented in Table A.4 diverge considerably from those that we expected because
the lexicographic ordering performs better than the zebra ordering and the result for the isotropic case is
larger than the 0.25 predicted by Eq. (A.18). The translation of the grid points by half space step, that
occurs in cell-centered grids in relation to vertex-centered grids, does not affect the Fourier analysis but it
could affect the behavior of the zebra method in the coarse grid correction, as is shown in [8] for the 2-D
case. Based on the good results with a four-color ordering reported in [8] for the 2-D case, we applied this
ordering and obtained more robustness. (See Table A.4.)

Tables A.5(a), (b), and (c) show the behavior of the four-color and zebra Gauss-Seidel methods as

smoothers. The methods have good behavior for strong values of the anisotropy where the convergence

1
€1+€2

presents similar convergence rates to the lexicographic ordering and parallelizes easily, so that it is an

rate decreases (improves) linearly with the strength of the anisotropy as O( ). The four-color ordering

attractive smoother.

A.5. The line Gauss-Seidel method. We also include line Gauss-Seidel in this analysis because of its
good behavior observed for strong anisotropies in a single direction. Its performance improves considerably
with Dirichlet boundary conditions when one of the anisotropies is stronger than the other; i.e, when one
direction dominates. The application of Fourier analysis to study the smoothing properties of y-line Gauss-
Seidel as applied to Eq. (3.3) is very cumbersome, here we present numerical results and some explicit
formula for the smoothing factor obtained by studying the behavior of the numerical results. The formulas
help us to explain the behavior of the method in a qualitative way, however they do not represent its accurate
behavior.

If 1 > 1 the smoothing factor can be approximated by

€1

pD% 22
1+ € + €25

that is equal to 0.5 for e; = 1 and tends to 1 for increasing values of €1, this behavior is observed in the
results of Table A.6(a). If e3 > €; > 1 the previous expression can be approximated by

1

~ 2
€2 27
1+61 n?2

(A.19) PD

and the method presents good convergence rates. (See Table A.6(b).) Eq. (A.19) shows that the smoothing
factor depends on the £ ratio. The results presented in Table A.6(c) also show this dependence on the
quotient between anisotropies.

On the other hand, if €; < 1 the smoothing factor can be approximated by
1

272
€1+ e +1

~

pPD ~

33



‘ €1 ‘ €2 H 7ZGS 4cGS
10-8 | 1072 0.99 0.99
1072 | 1072 0.96 0.96

1 1 0.36 0.28
102 | 10? 0.11 0.12
104 | 10* || 1.2x1073 | 7.4 x 1074
108 | 10% || 1.2x107° | 7.4 x 1076
108 | 10% || 1.2x1077 | 7.4 x 1078

(a) e1 = €2
la] e | 2Gs | 4cs
1|1 0.36 0.28
1| 10% 0.12 0.16
1|10 | 24x107% | 1.5x 1073
1 ]10% || 24x1075 | 1.5 x 1077
11108 || 24%x1077 | 1.5 x 10"

(b) €1 = 1 and various e

| a | e | zcs 4cGS
107% | 1072 0.99 0.99
1074 1 0.97 0.97
1074 | 10? 0.45 0.46
1074 | 10* || 24x1073 | 1.5 x 1073
1074 | 10% || 24x107° | 1.5 x 107°
1074 | 10% || 24x1077 | 1.5x 107"

(c) €1 = 10~* and various e;

TABLE A.5
Computational convergence factors, pe, of one 3-D V(1,0)-cycle with (x,y)-plane Gauss-Seidel (ZGS) and (z,y)-plane
four-color Gauss-Seidel (4cGS)

that tends to 1 for decreasing values of €1. (See Table A.6(a).) However if €5 >> n the smoothing factor can

be approximated by

- 1
P 622,%2 +1
In this case the smoothing factor decreases linearly with ez and not with . (See Table A.6(d).)

The expressions for the periodic case are obtained by letting n go to oo in the previous expressions. As
expected, the convergence rate improves linearly with es when ¢; = 1. However, another very important
result is that when e¢; > 1 the convergence rate grows with z—f and when €; < 1 the convergence rate grows
with e5. Consequently, when one of the anisotropies is stronger than the other, then only one term dominates
and the line smoother gives good convergence rates for practical mesh sizes. That is the explanation for the

good behavior exhibited by the alternating-line smoother on highly stretched grids along all directions.
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A.6. Conclusions about the smoothing factors. We have studied the performance of (x,y)-plane
relaxation methods as smoothers when e¢; < €s. All of them do not reduce the high components of the
error when both anisotropies, €; and €3, are lower than 1 or when €; is lower than 1 and €5 is not large
enough. In such cases, (y,z)-plane relaxation would perform as a better smoother. On the other hand, if
€1 > €2, (x,2)-plane relaxation smoother should be used when €; and €2 are lower than 1 or when €5 is lower
than 1 and €; is not large enough. Robustness can be achieved by applying the plane relaxation smoothers
alternatingly.

The results for periodic boundary conditions presented by Yavneh in [32] show that red-black block
relaxation without coarsening the coordinates relaxed in a block yields the same efficiency as a point-wise
smoother with full coarsening for the lower-dimensional problem defined by the coordinates that are relaxed
in odd-even ordering. Therefore, plane relaxation without coarsening of the coordinates with relatively
smaller or larger coefficients provides a very good smoother.

The question that arises here is whether it is possible to extend this result to include the case of block
relaxation with full coarsening for the methods under study. In this case the coordinates relaxed in the block
must be those with relatively larger coefficients, as is stated by the fundamental block relaxation rule.

Comparing the analytical results obtained in this section for plane relaxation in the 3-D case with the
results presented by Wesseling in [31] for line relaxation in the 2-D case we conclude that,

e first, and in general, the smoothing factor obtained by a line relaxation method in the 2-D case
coincides with the smoothing factor obtained for plane relaxation in 3-D. Indeed, the analytical
expressions presented in this section are similar to the formula obtained in [31] changing € to e; (we
supposed that €; < ez in the analytical development)

e second, the value of the smoothing factor for a plane implicit method (which depends on the strength
of the anisotropy) is somewhere between the value of the smoothing factor for a point-wise scheme
for the 2-D isotropic problem and the value of the smoothing factor of the point-wise method for
the isotropic 1-D problem.

Table A.7 contains analytic results obtained in this section and reported by Wesseling [31] and by Yavneh
[32] that verify these conclusions.

On the other hand, the value of the smoothing factor obtained by a line relaxation method in the 3-D
case is somewhere between the smoothing factor obtained with the point-wise version for the isotropic 3-D
problem and the smoothing factor obtained with the point-wise version for the lower-dimensional problem
defined by the coordinates that are not relaxed in the block; i.e., pointwise for the remaining 2-D problem.

This observation is verified by the results presented in [32] for the 3-D y-line zebra Gauss-Seidel, p = 0.32
fore; =1and p = (lffez)2 for €; > 2, and the experimental convergence factor of % obtained for the line
3-D line Gauss-Seidel (Table A.6(a)).

Consequently, as we expected, the smoothing factor of a block smoother with full coarsening approaches

e for periodic boundary conditions, the smoothing factor obtained with the point-wise version with
full coarsening for the lower-dimensional problem defined by the coordinates that are not relaxed in
the block, and

e for Dirichlet boundary conditions, an exact solver

as the anisotropy strength grows.
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1078 | 1078 || 0.99
1072 | 1072 || 0.96

1 1 0.48
102 | 10% | 0.95
10* | 10* | 0.98
105 | 10% | 0.99
108 | 10% | 0.99

(a) €1 =€

la]e |

1] 1 0.48

1 | 102 0.31

1| 10* || 81x10~*

1] 106 | 8.3x 1076

1]108 | 84x10°8

(b) €1 = 1 and various €9
Lale| [a ] e |
102 | 1 0.96 104 | 102 0.99
10% | 102 0.95 10* | 10* 0.98
102 | 10* 0.49 10* | 106 0.50

102 | 108 || 6.1 x 10~* || 10* | 10® || 6.1 x 10~*
10% | 108 || 6.2 x 1078 | 10* | 10'° || 6.2 x 108

(c) €1 = 102 and 10* and various €3

La [ e | [« [ |

1074 | 1072 0.99 1072 | 1072 0.96
10~4 1 0.97 1072 1 0.95
1074 | 102 0.50 1072 | 102 0.50

107% | 10* || 6.1x107* | 1072 | 10* | 6.1 x10*
1074 | 10% || 6.1x1076 | 1072 | 105 | 6.1 x 107
107% ] 10% | 6.2x 1078 | 1072 | 10® | 6.2 x 10~8

(d) €1 =107* and 102 and various e,

TABLE A.6
Computational convergence factors, pe, of one 3-D V(1,0)-cycle with y-line Gauss-Seidel
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Jacobi with damping Gauss-Seidel | Zebra Gauss-Seidel
€1 =1 €1 = 00 e1=1]€e>21]e=1] ¢ >0.18
3-D plane relaxation || wop: = %popt = % Wopt = %popt = % % \/ig 0.25 0.125
2-D line relaxation Wopt = %popt = % Wopt = %popt = % % \}g 0.25 0.125
2-D point relaxation || wopt = % Popt = % % 0.25
1-D point relaxation || wepr = %popt = % % 0.125

TABLE A.7

Explicit formula for the smoothing factors of different methods with block and point relazation
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